

Fleet Monitoring

System

Team 12: sddec12-20

Members: Lorenzo Chavarria, Nicolas De la Cruz, Joe Herrera,

and Marco Yepez

1

Fleet Monitoring System

Executive Summary

Development Standard & Practices

● Agile Development Standards

● JavaScript Coding Standards

● Google Java Style Standards

● MongoDB Schema Design Standards

Summary of Requirements

● Develop Android mobile application for Fleet Monitoring System

● Provide GPS location of each vehicle in a fleet

● Provide On-Boarding Diagnostics (OBD) data display for vehicles

● Provide client team chat

Applicable Courses from Iowa State University Curriculum

List all Iowa State University courses whose contents were applicable to your project.

● CPR E 288

● COM S 309

● COM S 363

● COM S 352

● S E 319

● S E 329

● S E 339

New Skills/Knowledge acquired that was not taught in courses

● Server configuration and deployment

● REST API creation

● Hardware equipment knowledge, e.g. I/O pins data sheet

2

Fleet Monitoring System

Table of Contents

Executive Summary 2

Development Standard & Practices 2

Summary of Requirements 2

Applicable Courses from Iowa State University Curriculum 2

New Skills/Knowledge acquired that was not taught in courses 2

Table of Contents 3

Design 5

Overview 5

Engineering Constraints and Requirements 5

UML 6

Overview 6

Android 7

Backend 7

Raspberry Pi 8

Implementation Details 8

Android 8

GUI 9

Landing Page 9

Sign Up Page 9

Login Page 10

Dashboard Page 10

Map Page 01 11

Map Page 02 11

Chat 12

Backend 13

Raspberry Pi 13

Testing Process & Results 14

Android 14

Backend 14

Raspberry Pi 14

Appendices 15

Appendix I: Operation Manual 15

Raspberry Pi 15

Hardware 15

Resources 15

Recommendations 15

Setup 15

3

Fleet Monitoring System

Server & Database 15

Services Needed 15

Recommendations 16

Setup 16

Android Application 16

Requirements 16

Setup 16

Appendix II: Alternative/Other Versions of the Design 16

References 16

Appendix III: Code 17

References 17

4

Fleet Monitoring System

Design

Overview

With UPS, FedEx, and numerous fleet companies out there, we need something to monitor and manage

the vehicle fleets. With our fleet monitoring system, a company would be able to use our user-friendly

solution. Our solution revolves around a mobile application to view GPS locations of each vehicle, client

chat, and vehicle’s On-Board Diagnostics (OBD) dashboard display. Our solution would be based on

MongoDB for our database and a server running Node.js REST API for microservices. The fleet would

need a PiCAN for each vehicle to be able to send data from the vehicle to the server. Through the

connectivity of each component, our solution would provide clients a fleet monitoring system.

Engineering Constraints and Requirements

● Constraints

○ The cost of the project must not exceed $200

○ Project deadline is November 25th, 2020

○ Each RaspberryPi is limited to 1mb of data each month

○ Vehicles must be 2009 or newer

○ The Android application must support Android 6.0 and above

● Non-functional Requirements

○ The server must be able to support over 50 clients with a response time of less than 5

seconds.

○ A user must be able to navigate between features of the app in less than 5 seconds on

average (demonstrates ease of usability)

○ The application must not crash 99% of the time a user is navigating

○ The server must be running for 100% of the time during business hours. The server may

be updated during non-business hours.

● Functional Requirements

○ Communicate data from a vehicle to server

○ Record data into database

○ Display vehicle data on a map for users

○ Allow users to communicate within a messaging system

● Operating Environment

5

Fleet Monitoring System

○ Windows OS

○ Android OS

○ Raspberry Pi OS

UML

Overview

6

Fleet Monitoring System

Android

Backend

7

Fleet Monitoring System

Raspberry Pi

Implementation Details

Android

For the Android application, Android Studio was used using Java. Volley, a HTTP library, was used for

communication between the application and server. The vehicle data was received from the server,

which got the information from the database. For the messaging feature, a web socket was used for

displaying each message that was sent from each user. For the map feature, a Google Maps API, called

Maps SDK, was integrated for Android. This API allowed us to add a map based on Google Maps data to

the application. This API also allowed for pins to be displayed which represent each vehicle. Each

vehicle pin is also clickable and displays data for that vehicle when it is clicked on. This data as well as

the location of that pin is read using a websocket that reads the information in real-time from the

server.

8

Fleet Monitoring System

GUI

9

Landing Page

The landing page includes the user two
options to select: sign up or login.

Sign Up Page

A user can sign up as a driver using their full

name, email, and a password. After signing up,
the user will be presented with the dashboard.

Fleet Monitoring System

10

Login Page

A user must login using a valid email and
password that belongs to their account.

Dashboard Page

The dashboard displays data about the user’s

current vehicle. The vehicle data available
includes engine coolant temperature, engine
load, vehicle speed, and fuel remaining level.

Fleet Monitoring System

11

Map Page 01

The GPS map contains the locations of other

drivers. Each vehicle pin is updated in
real-time.

Map Page 02

After clicking on a vehicle pin, a popup with

information about that specific vehicle will be
displayed.

Fleet Monitoring System

12

Chat

A user can use the chat to communicate with
other drivers on the fleet management system.

Fleet Monitoring System

Backend

The server for this project was not only a bridge between client and data, but it was multiple bridges.

Our server’s architecture is using microservices to be modularly independent between different services.

This allowed maintenance to take place in one service and let the remaining services function as they

normally would. When the GPS feature came around we found out the microservices were not going to

be sufficient alone, so we needed to use sockets. We opted for sockets to eliminate a continuous

while-loop queuing the database every n-seconds to allow our application to have real-time

communication between the vehicle and the clients. For our database, we are using MongoDB's NoSQL

style database to prepare any companies with a high-scalable database to accompany our NodeJS

server.

Raspberry Pi

The Raspberry Pi was the engine of our website. Implementing this part of the project consisted of

several hardware and software components. There were three main hardware components used:

Raspberry Pi, vehicle simulator, and GPS module. For software components, there were several used

from the python pip repository. Some libraries included gps, socketio, and python-can. To develop,

modify, and deploy the project, PyCharm was used. PyCharm was an essential tool because it provided

many remote tools that allowed development to be done in a more powerful computer than the

Raspberry Pi while allowing deployment and running the project using the Raspberry Pi interpreter and

libraries.

13

Fleet Monitoring System

Testing Process & Results

Android

● Dynamic testing

○ Functionality was visually inspected to ensure goals were met throughout the project

○ Server communication was tested by having data from the Raspberry Pi to go to the

server and then displayed on the android application

Backend

● POSTMAN for testing API routes

○ Mimicked as a basic HTTP call to show any and all results from each call. This call also

displayed the return status code of each call

● Mock testing for websocket

○ Allowed a proxy client to communicate with other proxy clients and the data sent

between each client was also stored in the database

Raspberry Pi

● Used vehicle simulator to provide OBD queries and outputs

○ Simulator was able to return proper data

● To test gps location, user can just run the module using the linux terminal

○ GPS module displayed current location

14

Fleet Monitoring System

Appendices

Appendix I: Operation Manual

Raspberry Pi

Operating the Raspberry Pi is simple and, with some understanding, anyone can set it up.

Hardware

● PiCAN

● Vehicle Simulator

● GPS Module

Resources

● OBD-II PIDs

● PiCAN

● GPS Module

Recommendations

● PyCharm Professional

○ Useful for remote interpreter and transferring files to a Raspberry Pi

Setup

1. Connect the GPS module and the simulator to the PiCAN

2. Copy the embedded system project files to the Raspberry Pi

3. Ensure all the libraries and configurations are correct

4. Run the AppController.py file on a terminal

5. After running the file, you should expect outputs on the terminal showing a log

Server & Database

Services Needed

● MongoDB Account

15

https://en.wikipedia.org/wiki/OBD-II_PIDs
https://www.elektor.com/pican-2-can-bus-board-for-raspberry-pi
https://learn.adafruit.com/adafruit-ultimate-gps/downloads

Fleet Monitoring System

● Web Server

Recommendations

● Unless experienced with other Linux versions, Ubuntu works well for server

● Server SSH access with install permissions allowed

Setup

1. Clone project into desired folder in server

2. Run all microservice files named “server.js” or “socket_server.js” using the command:

node <service file name> &

Android Application

Requirements

● Android 6.0 or above

● Connection to cellular data or wifi

● Fleet Monitoring System mobile application downloaded and installed

Setup

1. Download and install application on mobile device

2. Open application and sign up for an account

3. Upon signing up, the user will be redirected to the dashboard

4. Navigate between dashboard, chat, or the map as the user desires

Appendix II: Alternative/Other Versions of the Design

References

Latest Design Document

● http://sddec20-12.sd.ece.iastate.edu/docs/design/Design%20Document%20v3.pdf

16

http://sddec20-12.sd.ece.iastate.edu/docs/design/Design%20Document%20v3.pdf

Fleet Monitoring System

Appendix III: Code

References

GitLab

● https://git.ece.iastate.edu/sd/sddec20-12

17

https://git.ece.iastate.edu/sd/sddec20-12

